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The utility of a new parameter, the ligand-ligand pair potential, 6, and its variation with electron count (x) is used to understand 
the geometries of small molecules and the origin of electron-counting rules. Although derived from molecular orbital calculations 
and defined as representing the potential between pairs of atoms coordinated to a central atom, phenomenologically 6 equally 
well represents the interactions between the electron pairs linking these atoms to the central one. This provides a way to extract 
an electron-pair repulsion picture from a one-electron molecular orbital theory and is able to provide some insights into why the 
VSEPR scheme works. We show how knowledge of the sign and magnitude of 6 determines angular geometries, relative bond 
lengths, and critical electron counts for the electronic stability of molecules with certain structures. In contrast to the ideas of 
the VSEPR scheme, the model is equally applicable to main-group and transition-metal systems. 

Introduction 
Chemists have constantly sought new ways to understand the 

details of molecular geometry, and many different theoretical 
methods, varying in sophistication, have been used over the years 
to study the shapes of small molecules.' The molecular orbital 
based models initiated by Mulliken2 and further developed by 
Walsh' in his classic series of papers have found an effective 
proponent in the Hoffmann school! The ideas of Jahn and Tellers 
expanded to include pseudo- and second-order variants6 have been 
of especial interest to transition-metal chemists. A recent advance 
has been the development of topological ideas,' via the method 
of moments, which has provided a global orbital picture. However, 
perhaps the most often used approach for main-group-centered 
molecules and solids is not a molecular orbital one a t  all but is 
the scheme developed over the years by Sidgwick, Powell, Nyholm, 
and Gillespie known as the valence-shell electron-pair repulsion 
(VSEPR) model." Here the electron pairs around the central 
atom repel each other (supposedly by "Pauli" forces), and the 
equilibrium angular geometry arises via minimization of such 
interactions. The lengths of symmetry-inequivalent bonds are also 
set by repulsions between pairs of electrons. Irrespective of the 
theoretical justification of the model, it is certainly true that the 
geometries of small main-group molecles as mimicked by mo- 
lecular orbital calculations behave as if there exist repulsions of 
this type between the electrons localized in the bonds. Bartell 
has exploited this result in his "points-on-a-sphere" approach: 
and we have shown'O using a molecular orbital model that the 
energetics of some four-electron-pair AX4 species (where A is a 
main-group atom and X a typical ligand) behave as if the in- 
terbond potential scales as r-l, exactly the functional form expected 
from Coulomb's law. The two types of model are based on 
diametrically opposite concepts. One-electron molecular orbital 
ideas concentrate on overlap forces and ignore electron-electron 
interactions, but the VSEPR scheme ignores overlap forces and 
concentrates on electron-electron interactions. In this paper, we 
examine the utility of a new parameter, the ligand-ligand pair 
potential, derived from molecular orbital calculations and defined 
as representing the potential between pairs of atoms coordinated 
to a central atom, but phenomenologically equally well repre- 
senting the interactions between the electron pairs linking these 
atoms to the central one. This provides a way to extract an 
electron-pair repulsion picture from a one-electron molecular 
orbital theory. 

The Pair Potential 
Pair potentials, whether between atoms, stable molecules, or 

molecular fragments is a well-used concept in the study of sur- 
faces." The signs and magnitudes of the first, second, and higher 
neighbor potentials and their analogues, describing the energetics 
associated with clusters of three or more adsorbed atoms, crucially 
control the ordering patterns found for adsorbed species and the 
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phase diagram describing surface structure. If the pair potentials 
between two molecules adsorbed on a metal surface are positive, 
then the two species will repel one another and in general a 
collection of such adspecies will keep as far apart as possible. If 
these potentials are attractive, then the adsorbed species will 
arrange themselves into a surface cluster where atoms or molecules 
are found on adjacent atoms. The concept of the pair potential, 
however, is not one that has been generally used in molecular 
chemistry, but there is no reason that it should not. If the cal- 
culated pair potential between two coordinated atoms or groups 
is large and positive, then, by analogy with this surface discussion, 
one result is that the two ligands will be forced apart, leading either 
to a large structural change or to ejection of one ligand from the 
coordination sphere. The latter process is expected if the pair 
potential is larger than the metal-ligand bond energy. If the pair 
potential is positive but rather small, then this may reflect rather 
modest structural changes. Clearly, if the pair potential is zero, 
then the geometry under consideration is stable for that electron 
count. The pair potential may be readily computed once we realize 
what it represents energetically. If two ligands (X, Y) have a zero 
pair potential, then this implies that the coordination of one is 
energetically independent of the presence of the other. This means 
that the bond energy associated with the attachment of X to a 
central atom (A) is the same irrespective of the coordination of 
Y. So, a useful operational definition of the pair potential (4) 
between two ligands X in a complex of stoichiometry AXn is just 

(1) 
which simply reduces to 

(2) 
Of course, depending upon the geometry of the molecule, several 
different pair potentials may be defined, including cis, trans, 
axial-equatorial, etc. We shall use one-electron ideas to explore 
the implications for this parameter and note that although the 
computation of a bond strength using such theories is usually a 
worthless endeavor, the total number of A-X linkages is the same 

4 = 2[E(AXn) - E(AX,I)I - [E(AXn) - E(AX,2)1 

4 = [E(AXn) + E(AXn-,)I - ~[E(AX,I)I  
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Figure 1. Pair potential and energy difference curves derived from the 
angular overlap model using p orbitals for the central atom A in AX, only 
as a function of electron count: (a) pair potential, 6, between the two 
ligands X for the bent molecule AX, (angle XAX = 90°); (b) energy 
difference curve AE for bent and linear AX2. 

for both bracketed expressions in eq 2. Calculation of the pair 
potential in this way is therefore expected to be a valid procedure. 
In Appendix I we describe further aspects of the calculation of 
4. Of particular utility is the study of qb(x), the pair potential 
as a function of fractional orbital occupancy (empty, 0 < x < 1, 
full). We recall the broader perspective obtained by viewing such 
electronic parameters as a function of electron count using some 
results from the method of moments.‘ Specifically, study of the 
behavior of the energy difference between two structures as a 
function of electron count, U ( x ) ,  has been particularly profitable. 

As an illustration of the method, we show in Figure l a  the 
calculated value of the pair potential, 4(x), between the two X 
ligands for the bent AX2 geometry obtained using this prescription. 
(4(x) evaluated at  the linear geometry is identically zero for all 
x. )  Figure 1 b shows the calculated energy difference curve h E ( x )  
for the linear and bent molecules. The model used is probably 
the simplest possible and employs only the central atom p orbitals, 
two ligand orbitals, and the angular overlap model’ to evaluate 
the orbital energies shown in Figure 2. As in the Rundle-Pimentel 
recipe,12 two electrons are stored in the stereochemically impotent 
(on this model) central atom s orbital. The h E ( x )  plot has four 
nodes, just as expected on the basis of the moments method and 
described earlier in those terms.% The predictions of the plot are 
in complete agreement with experiment and the geometries ex- 
pected on the basis of VSEPR. Molecules with a total of four 
electrons (two in s, two in the set of orbitals used here) are expected 
to be linear (e.g. BeHz), those with six and eight electrons (e.g. 
singlet CH2 and OHz, four and six electrons, respectively, in the 
p orbitals) are expected to be bent, and those with ten electrons 
(e& “NeH2” or KrF2, eight in the p orbitals) are expected to be 
linear again. These geometries are in excellent agreement with 
the predictions using the +(x) plot for the two ligands in the bent 
geometry. +(x )  is large and positive for a total number of two 
(BeHJ and five (‘NeH2”) valence electron pairs (two and eight 
electrons, respectively, in the p orbitals), a result demanding 
opening of the XAX angle toward the linear geometry. For a total 

Table 1. The First Five Moment Differences for Linear and Bent 
Structures in Terms of the Interaction Integrals 8 and the 
Differences in Orbital Ionization Energiesa 

1-3 4 5 
P 0 -444 - l O @ p I  
s+p 0 -48; + 8/32@,2 (208, fip2 - 106p’)Am + 

(l0@,2@,2 - 108;)hP 
d 0 -16&’@b2 -4O@:&*Al 

a Parameters correspond to Figure 4 and diagram 1. 

number of six (CH,) and eight (OH2) valence electrons, re- 
spectively (four and six electrons, respectively, in the p orbitals), 
qb(x) is identically zero, indicating stability of the bent geometry 
here. Thus there is a perfect match between the geometry pre- 
dictions of the two plots. 

It is appropriate at this stage to make a connection with VSEPR 
where the geometry is set by the repulsions between the various 
pairs of electrons in the form of bond pairs and lone pairs. The 
present model at  face value leads to an explanation of the geom- 
etries of these molecules based on the variation with electron count 
of the repulsion between the two ligands X. But it is important 
to appreciate that this “repulsion” is not of the steric type. No 
orbital interactions between the ligands are included in the cal- 
culation, and thus their mutual influence has to be through the 
A-X bonds. We could thus equally well rephrase this explanation 
of the AX2 molecular geometry problem in terms of the repulsion 
between the electron pairs in the A-X bonds. Such a description 
then leads to some obvious parallels with the tenets of the VSEPR 
scheme. However, with the use of VSEPR, the geometry beyond 
BeH, is set by repulsions between an increasing number of lone 
pairs and between these lone pairs and the bond pairs, but on the 
present model the geometry is set by variation with electron count 
of the magnitude of the ‘bond pair repulsions”. The latter, for 
our simple example here, are associated purely with the porbital 
manifold, but in the VSEPR scheme they must include the valence 
s orbital pair. We note that an a b  initio studyI3 of the stereo- 
chemical importance of the 2s orbital on oxygen leads to the 
conclusion that the Rundle-Pimentel assumption is, in fact, 
probably quite correct here. The HOH angle in water (expected 
to be close to 90° on the Rundle-Pimentel scheme), rather than 
being the natural tetrahedral angle from VSEPR, is opened up 
from 90’ by Ha-H interactions, a suggestion also made in ref 1. 
There is no consistent picture within the VSEPR framework for 
the angles found close to 90’ in H2S(e) and H2Te. 
AX,, and ML,, Systems 

In this section we describe for a series of AX,, (where A is a 
main-group atom and X a typical ligand) and ML,, (where M is 
a transition metal and L a typical ligand) molecules the results 
of calculations of the extended Huckel type that lead to energy 
difference curves, A E ( x ) ,  for pairs of structures and to pair po- 
tential plots, qb(x), for some selected atom pairs. One qualification 
has to be made at  this stage. In order to present plots with some 
generality as a function of electron count, we used the same set 
of parameters irrespective of chemical identity. We mostly used 
a u-only model, contracted the ligand orbital exponents (see 
Appendix 11) to minimize overlap between the ligands, and kept 
all central atom-ligand distances fixed. Two sets of calculations 
are presented. In the first, s+p orbitals only are included for the 
central atom, and in the second, a d-orbital-only model is used. 
From the set of possible structures of main-group molecles and 
known transition-metal fragments, some selected for study are 
shown in Figure 3. For all pairs of structures, the first disparate 
moment in their energy density of states is the fourth, a result 
easily understood by counting the walks through the central atom 
as shown in Figure 3 and described in more detail elsewhere.‘ The 
energy difference curves as a function of x for each pair (Figure 
4) should then have four nodes. This is however true only for the 
d-orbital model. From the calculations that employed s and p 

~ 
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Figure 2. Molecular orbital diagrams for (a) bent AX2 (central atom A with two nonbonding ligands X and AX with one nonbonding ligand X) and 
(b) bent and linear AX2 using p orbitals for the central atom A and constructed with the angular overlap model. An is defmed as IH,,(Zp(A)) - Hdls(X))(.  
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Figure 3. Possible structures of main-group molecules and transition- 
metal complexes of stoichiometries AXs (I), AX, (11), and AX, (111, IV) 
shown with the important walks of length 4. 

orbitals on the central atom, an additional node occurs in some 
of the plots. To understand its origin, it is profitable to study the 
linear versus bent AX2 system. Table I and Figure 5 show the 
differences in n-walks, which lead to nth moment differences 
between the linear and bent molecules as a function of the model 
used (p-, s-, plus p-, and d-orbital models, respectively). The 
simplest way to visualize the state of affairs uses the gonly model. 
Allowing walks through p orbitals a t  A in AX2 (Figure Sa), we 
see that there exist additional 4-walks in the linear system that 
are not possible in the bent one with an angle of 90°. This comes 
about simply because of the right angle between the two p orbitals. 
In the case where only d orbitals are used at  the central A atom 
(Figure Sc), the walks have to be weighted by using the two 
different kind of overlaps (0, a ( ls1z2), Pb a ( ls(x2 - y 2 ) )  in 
evaluating the first disparate moment. 

The case where atom A holds both s and p orbitals (Figure 5b) 
is a little different. In  order for the two ligand orbitals to "see" 
each other through A, a self-retuming walk of length 4 is required 
of course. Only walks along bonds of length 4 occur in the fourth 
moment difference, and so there is no dependency on differences 
in ionization energy of the central atom s and p orbitals. Since 

.1,Q- .; 0 2 4 ' B ' 6 I O  12  1 4 ' 1 8 '  l a 4  
Total Elenron Count 

Figure 4. Calculated energy differences of pairs of AX, and ML, 
structures shown in 2 as a function of their electron count using s+p 
orbitals and d orbitals, respectively, for A and M and s orbitals only for 
X and L. Known examples with corresponding electron counts are in- 
dicated. 

there are no five-membered rings, such a dependence is found first 
at  the fifth moment when walks in place may occur in addition 
to the walks along bonds. All fifth-moment difference terms 
contain one of the orbital energy differences shown in 1. This 
is particularly important for the s+p orbital case, as we have 
described earlier." Notice that for this orbital model the difference 
in the fourth moment is zero for = (1/2)lI2. Thus, if the 
ratio of & to Bp is close to this value, then the fifth moment 
becomes important (and equals -S&'Asp at  the equality). The 
influence of the fifth moment is clear in a qualitative way in the 
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calculated results of Figure 4 for the pairs of structures 11,111, 
and IV. In more general terms, we should expect that the ge- 
ometries of these small molecules should be quite sensitive to the 
central atom s-p separation. We note that in fact that this has 
already bem demonstrated. Hall" found by calculation a marked 
dependence of the geometries of these small molecules on this 
energy separation. 

Figure 6 shows some pair'potentials +(x) for the set of m o l d e s  
under consideration computed by using the same geometrical and 
electronic parameters used to generate Figure 4. They are shown 
for the chemically relevant part of x (see Appendix I) and mesh 
quite nicely with these AE(x) curves. All pairs of structures are 
related in the sense that the geometry with the smaller fourth 
moment can be transformed to the structure with a higher fourth 
moment by increasing the angle between two ligands as shown 
in 2. In this moments language, for fourth-moment problems, 

2 

the resulting structures are generally energetically preferred at 
early and later orbital filling (Figure 4). Specifically, note how 
the cquatoriakquatorial pair potential of the trigonal bipyramid 
is computed to be large and positive for BCI, and the 16-electron 
species Cr(CO)9 Opening this angle to 180' leads to the 
squarepyramidal geometry actually found for both of these 
molecules and the arrangement energetically preferred in Figure 
4. (See ref 1 for the observed geometrical details of the molecules 
discussed here.) For PCI, and the 18-electron species Fe(CO),, 
the pair potential is positive but rather small, in keeping with the 
small energy difference calculated between these two structures 
at this electron count in Figure 4. 

The computed results for PCI, and BCI, are interesting. Our 
$(x) and A&) plots come from calculations where a generic set 
of orbital parameters have been used in an attempt at generality 
(Appendix 11). However, they do not propcrly mimic the ener- 
getics associated with all molecules. Thus BCI, is predicted to 
be only just planar and PCI, only just trigonal bipyramidal from 
the AE(x) plot, whereas we would expect the energy differences 
to be somewhat larger. A study of different trigonal-bipyramidal 
molecules, with therefore different ligand orbital parameters, leads 
to changes in AE but little change in 4. AE for this set of 
calculations indicates a balance betwan ligand-ligand interactions 
and central atom-ligand forces in controlling the geometry. 

The pyramidal geometry found experimentally for Cr(CO), 
is well predicted by the zero pair potential for this geometry at 
d6. The observed T-shape structure ford* Rh(PPh,),+ is in a d  
with the positive pair potential for both geometries. Notice the 

(14) Hall. M. B. I w g .  Chew, 1918. 17. 2261. 
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4-walks through pdrbitals 
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0 
&a 

I ''0 

0 

4-walks through d-orbitals 

walks which are dinerent in benf ana linear Ax2 

-B.'Pd Pa%,' 
Figure 5. Walks through the central atom A of length 4 in bent and 
linear AX. using (a) porbital, (b) s+porbital, and (c) ddrbital models 
for A. In (b) and (e) walks through two different orbitals located on 
atom A (s, p and x2 - 3, 9, respectively) a n  shown. 

larger value of + for the geometry further away from the T. The 
trigonal-planar structure ford" Ni(CO), is in accord with the 
zero pair potential at this count. 

For the series of four-coordinate molecules the positive pair 
potential found for the 'octahedral cis-divacant" structure at 16 
electrons in Figure 6 shows up as an energetic preference for the 
square-planar geometry in Figure 4. For the 14electron Cr(CO), 
molecule, this pair potential is zero, and the molecule is stable 
in this geometry. Exactly analogous comments apply to the pair 
of molecules XeF, and SF,. 

The pair potential calculated between cis ligands is a useful 
tool to examine angular geometry changes, but what are the 
properties of the pair potential between trans ligands? These 
forces, repulsive or attractive, will influence bond lengths only. 
A positive value of 4(x) should lead to a lengthening and a 
negative value to a shortening of these linkages relative to the 
others in the molecule. This is borne out in practice. Figure 7a 
shows the pair potential plot for trans ligands in geometries 2a 
and 3b (2) with maxima at 2 and 4 electrons, respectively, for 
the s+p orbital model. These electron counts correspond to the 
molecules SF, and CIF,, which indeed have longer axial (for a 
dscription of these molecules based of a trigonal bipyramid) than 
equatorial bonds (SF, axial 164.6 pm, equatorial 154.5 pm; CIF, 
axial 169.8 pm, equatorial 159.8 pm). Similar results are found 
for a pair of the trans ligands that form the base of the square 
pyramid, geometry Ib. Here for the s+porbital model a strong 
positive pair potential between the two trans ligands is found at 
an electron count of 2 electrons. This would correspond to the 
longer equatorial than axial bond lengths actually found in BrF, 
(axial 168 pm, equatorial 175-182 pm). The lengthening of the 
axial bonds in molecules of geometry l a  (like PF,) does not show 
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Figure 7. Calculated pair potentials of two trans ligands in molecules 
with structures shown in 2 as a function of electron count (cf. caption 
to Figure 6). 

up in the plot. The reason for this certainly lies with our parameter 
choice. Using a series of different orbital parameters leads to a 
computed trans pair potential in accord with the calculated dif- 
ferences in bond overlap populations. For the d-orbital model for 
transition-metal complexes (Figure 7) we find that only minima 
occur for structures la,  2a, and 3b (2). This shortening of the 
axial bond lengths compared to the equatorial ones predicted by 
the model is observed in Fe(CO)5 (axial 180.6 pm, equatorial 
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(183.3 pm) although here, in comparison with experiment, we must 
be careful to separate the effects of u and r bondong.ls 

For the T-shape structure, although the prediction of a longer 
unique M-L distance at d8 is in accord with the computed bond 
overlap populations, it is contrary to the experimental result for 
the sole example, Rh(PPh3)3+. However this molecule is distorted 
some way away from the ideal T in terms of L-M-L angles and 
contains a close phenyl group. 

The predicted shorter axial than basal linkage for the d6 square 
pyramid is matched by the relative sizes of the experimentally 
determinedl6 vibrational force constants in M(CO)5 molecules 
(M = Cr, Mo, W). Similarly, the predicted longer axial than 
equatorial bond in the d6 butterfly structure, although small, is 
matched by the relative sizes of the experimentally determined1' 
vibrational force constants in M(C0)4 molecules. We should, 
however, note that the actual structures are distorted quite a bit 
away from this ideal "cis-divacant* structure. The non-zero value 
of the pair potential for do and low d counts in these plots are 
results accessible from the angular overlap model. From do to 
d6 4 is simply equal to 1.75fu for the T and square-pyramidal 
geometries and equal to 4fu for the octahedral cis-divacant 
(butterfly) and trigonal-bipyramidal geometries. 

Thus the relative bond lengths in these molecules, one of the 
two geometrical parameters accessible by using VSEPR ideas, 
may be viewed by using the same pair potential approach. Note 
that both main-group and transition-metal complexes fall under 
the same umbrella. In terms of an electron pair repulsion model, 
using the present approach, we would say that the relative bond 
lengths are set by the signs of the trans repulsions between bonding 
pairs of electrons. Contrast this with the VSEPR model, where 
the relative bond lengths in SF, and CIF3, for example, are set 
by repulsions between bonded and nonbonded pairs. 
The Jab-Teller Theorem 

As we pointed out in the Introduction, there is no monopoly 
on ways to approach the structural problem. However the ideas 
of the Jahn-Teller theorem have been of considerable importance 
in the understanding of transition-metal complexes. In this light, 
it is interesting to note that the peaks in the 4(x) plots often, but 
not always, correlate with points of first- and second-order 
Jahn-Teller instabilities. With reference to Figures 4 and 6, 
first-order instabilities are predicted to occur (Figure 8) for the 
trigonal bipyramid in I for d5-d7 (with a maximum at d6) and 
in I11 and IV at d7-d9 (with a maximum at d8) in IV there is a 
strong second-order coupling at d6 that has a larger effect on 4(x) 
than the first-order one at d8. The figure shows results for a 
d-orbital-only model. Clearly, the energy difference between the 
two levels that couple in the second-order Jahn-Teller distortion, 
one of which is of a l  symmetry, will depend upon the inclusion 
of a central atom s orbital that transforms as the same symmetry 
species. Figure 9 shows how this pair potential is indeed sensitive 
to the s-orbital inclusion. When s and d orbitals are included on 
the central atom, the magnitudes of the pair potentials at d6 and 
d8 become quite similar. 

For the main-group case, there is a first-order instability for 
the trigonal-planar to T-shape geometry in I11 for the 10-electron 
ClF,. Using the prb i ta l  model for AH2 in Figures 1 and 2, notice 
that there are accidental degeneracies at the bent geometry. The 
maxima in the pair potential correspond to those electron con- 
figurations where these degenerate orbitals are half full of elec- 
trons. 

There is a very interesting result in 11. The behavior in the pair 
potentials for d7-d9 (with a maximum at d8) indicates, by analogy 
with the discussion above, that there might be a strong second- 
order coupling with a vibration mode which takes the butterfly 
structure to the square plane. However, the increase in the 
HOMO-LUMO gap at d8 is generated purely by first-order 
changes in overlap; HOMO and LUMO remain of different 

(IS) Rossi, A. R.; Hoffmann, R. Inorg. Chem. 1975, 14, 365. 
(16) Perutz, R.; Turner, J. J. J .  Am. Chem. Soc. 1975, 97, 4791. 
(17) Perutz, R.; Turner, J. J. J .  Am. Chem. Soc. 1975, 97,4800. 
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Figure 8. Molecular orbital diagrams for structures la-3c (2) using d orbitals only and constructed with the angular overlap approach. 
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Figure 9. Pair potentials of two ligands of structure 3c using d orbitals 
and s+d orbitals for the central atom A, respectively, as a function of 
d-electron count. 

symmetries. Thus, although the Jahn-Teller approach is a useful 
one in the prediction of molecular geometry, it is not applicable 
in all cases. Any opening of a gap on distortion though, whatever 
its origin, will give a positive pair potential at the relevant electron 
count. 

The examples above used the pair potential to comment on the 
relative bond lengths in molecules where more than one sym- 
metry-equivalent set is present. A molecule with octahedral 
symmetry and a d-electron count of d7-d9 is susceptible to a 
Jahn-Teller distortion, as indicated in 3. Figure 10 shows the 

3 
pair potential computed between two trans ligands for such an 
ideal octahedral complex (curve a). Certainly the plot does not 
indicate that such systems are geometrically unstable. It contains 
a region (do-d6) where the pair potential is small and positive and 
a region up to d'O where it is zero. Both results are accessible 
from the angular overlap model. From do to d6 6 is simply equal 
to 4f0. The zero value of the pair potential at  higher electron 

-0.8) 
0 2 4 6 8 1 0  

d Electron Count 

I -- I 

Figwe 10. Calculated pair potentials of two trans ligands in Oh-ML6 and 
ML8 complexes using a d-orbital model. Shown are two curves, one (a) 
for the undistorted molecule and one (b) with a pair of elongated trans 
bonds. 

counts is understandable from eq 2 and the energy levels' for the 
octahedron, square pyramid, and square. The highest energy 
orbital has identical energy (3e,-9fu from the angular overlap 
model) in all three geometries. Conversion of the problem into 
a second-order one by stretching two trans linkages and compu- 
tation of the pair potential between one pair of the remaining two 
leads straightaway to an attractive potential (curve b). The motion 
that such a result predicts is one component of the e vibration 
which leads to the classic Jahn-Teller distortions of d7-d9 ML6 
complexes. In more general terms the result may possibly be 
understood on symmetry grounds. All three pairs of trans linkages 
are symmetry equivalent, and thus elongation of one pair over 
another will not be seen in such a treatment. This is in contrast, 
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Figure 11. Calculated pair potentials of two cis ligands of Oh-ML6, 
TdML4, DSr-MLs, and Du-ML4 complexes using s+p+d orbitals for the 
central atom. 

for example, to the non-zero pair potential between a pair of 
equatorial ligands in the trigonal-bipyramidal structure at d6. Here 
the three ligands cannot be divided into mutually exclusive pairs. 
Support for such a symmetry argument comes from calculations 
on the M b  cube (Figure 10). An exactly analogous result is found 
for the 
Electron-Counting Rules in Molecules and Clusters 

Electron-counting rules such as the 8- and 18-electron rules 
for main-group and organometallic chemistry and Wade’s rulesI8 
for clusters of both main-group and transition-metal types have 
proven enormously useful in providing a framework for the or- 
ganization of chemistry. As we recently pointed out in the search 
for a similar rule for adsorption on surfaces,19 use of the molecular 
pair potential provides another way to view rules such as these. 

Figure 1 1  shows computed pair potential plots as a function 
of central atom electron count between two cis L groups in four 
standard geometries found for transition-metal ML, species. We 
chose this pair potential since in all the geometries (with the 
exception of the tetrahedron) no stable geometry is expected to 
result by moving the ligands apart. If the amplitudes of the 
maxima found in I#J(x) are larger than the metal-ligand bond 
energy, certain electron counts will lead to instabilities associated 
with ligand loss. For example, the pair potential would be so 
repulsive for the hypothetical 20-electron species (d8) Fe(CO), 
that one of the CO groups would be ejected from the molecule 
to give the stable 18clectron molecule Fe(CO)* Thus the electron 
count at the foot of such peaks is that appropriate for stability 
and leads to another way to view electron-counting rules of which 
the 8- and 18-electron rules are special cases. Notice that within 
the d region the highest electron counts allowed for the octahedron, 
trigonal bipyramid, and tetrahedron occur at d6, d8, and dlO, 
respectively. A similar picture holds for the square-planar ge- 
ometry, but here the critical point on the plot corresponds to 16 
electrons, Le., d8. The tetrahedral geometry is cleanly converted 
to the butterfly via repulsion of a pair of cis ligands. Notice that 
at d6 this pair potential is largest, appropriate for the octahedral 
cis-divacant structure of Cr(C0)4. 

These calculations were performed by using standard param- 
eters for transition metals and so are not immediately applicable 
to main-group molecules, but there are immediate indications of 
interesting structural results here too. The foot of the second peak 
of Figure 1 1  for the octahedron occurs at the filled d shell and 
represents the stability of main group molecules (e.g. SF6 or BrF6+) 

parameter involving a pair of trans ligands here. 

(18) Wade, K.  Adu. Inorg. Chem. Rodlochem. 1976, 18. 1. 
(19) Burdett, J .  K.; Fassler, T. F. Inorg. Chrm. 1990, 29, 4594. 
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with this geometry at the (s+p)O electron count. For the tetra- 
hedron, stability is indicated by both 8- and 18-electron rules; i.e., 
d10 and (s+p)O electron counts occur at the same point. Thus 
although S(e)F6 and CF4 are stable octahedral and tetrahedral 
species, respectively, with an extra electron in each case the pair 
potential becomes repulsive. As a result, we expect to find a 
7-valence-pair octahedral molecule AF6- which loses an F ligand 
to give stable square-pyramidal AFs, in the same way that the 
hypothetical tetrahedral NF4- loses a ligand to give stable py- 
ramidal NF,. Notice the different behavior of the squareplanar 
geometry. The plot predicts stability for the (s+P)~ configuration. 
This is interestingly the appropriate electron count for the 
square-planar molecule XeF4. The result for the trigonal bi- 
pyramid is not quite as clear. The d-orbital result predicts a 
maximum at dIo, but the s+porbital model, a value close to zero. 
What is actually seen is the sum of the two. A calculation where 
the d orbitals are contracted does in fact lead to a pair potential 
close to zero for the trigonal bipyramid. Thus the hypothetical 
trigonal-bipyramidal molecule SF; loses an equatorial ligand to 
give stable butterfly SF4. 

The crucial role of the valence s orbital in determining the 
structure shows up nicely too. The hypothetical AFC molecule, 
used in our illustration above, is isoelectronic with the stable species 
XeF, and BrF6-. Indeed, there is a whole series of octahedral or 
slightly distorted octahedral molecules with 7 valence pairs, the 
undistorted members of which are violators of the VSEPR rules.2o 
Figure 11 shows the pair potential plot for the six-coordinate 
molecule using an s+p+d model, where at the relevant electron 
count there is a repulsive cis ligand pair potential. However, use 
of the angular overlap model (including both e, and f, terms) for 
the p-orbital manifold alone leads to a zero value for this pair 
potential for the 6-pair case (7 if the s-located pair is included). 
Thus the pair potential may run from being zero on the p-or- 
bital-only model (where the s orbital is stereochemically impotent), 
giving an octahedral geometry with an inert pair, through small 
values to give the distorted octahedral geometry of XeF6, to being 
large and leading to the ligand loss in (presently hypothetical) 
molecules such as IF6-. Such behavior may be mimicked by 
changing the parameters of the extended Hiickel model to simulate 
such electronic requirements. 

Similar considerations apply to the pair potential calculated 
for polynuclear molecules. These species are of two types, low- 
nuclearity molecules such as Mn2(CO),, and Fe3(CO)12 and cage 
molecules such as B6H6.’-, although both types may often be 
accommodated in the widest view of Wade’s rules. Figure 12 
shows the pair potential calculated between two ligands in M2Llo 
and M 2 b  molecules. Notice that again there are two peaks. The 
d-electronic configuration corresponding to the foot of the first 
peak in Figure 1 l a  is appropriate (d’) for the stable molecule 
Mn2(CO)lo and in Figure 1 l b  is appropriate (d8) for the not- 
so-stable species Fe2(C0)8, isolobal with ethylene. The foot of 
the second peak corresponds to the state of affairs where there 
is a pair of central atom s/p electrons per M2 unit plus a filled 
d shell. Such an electronic situation would be appropriate for the 
known species S2FI0 and unknown P2F8 species where the s/p pair 
of electrons is associated with the S-S and P-P bonds respectively. 

As we know from orbital considerations,21 the ML, geometry 
is vital in determining the optimal number of electrons for stability. 
For example the trigonal bipyramid less one axial ligand and with 
a d9 electron count is isolobal with CH3 but the trigonal bipyramid 
less one equatorial ligand and with a d8 electron count is isolobal 
with CHI. Thus in Figure 12b,c the critical electron counts for 
two M2L8 geometries are 8 and 9, respectively. These corres nd 
to the molecules Fe2(C0)8 and Fe2(C0)82-, respectively. 2 p o  

(20) The recently determined structure of BrF6- shows an undistorted octa- 
hedral geometry as dots BrF6+: Mahjoub, A. R.; Hoser. A,; Fuchr, J.; 
Seppelt, K. Angew. Chem., Int.  Ed. Engl. 1989, 101, 1528. Further 
examples: Reference 1 .  Greenwood, N. N.; Earnshaw, A. Chemfstry 
of the Elements; Pergamon Rcss: Oxford, U.K., 1984. 

(21) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982, 21. 711. 
(22) The pair potentials in the staggered conformation observed for Mn2(C- 

O),o and Fe2(C0)*” are virtually identical. 
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Fipn 12. Calculated pair potentials of two cis ligands located at two 
adjacent atoms in M2LI0 and M& as a function of s+p+d electron count 
of M. 

Figure 13 shows cis and trans I$(x) plots between BH units in 
the octahedral cage molecule B6Ht-. They show a sharp increase 
just above 26 electrons. Recall from Wade's rules that this 
molecule is stable for a total of 26 electrons, made up of 7 skeletal 
electron pairs plus 6 B-H bonding pairs. The positive cis potential 
has an interesting geometrical result. The strong repulsion at 28 
electrons between a pair of adjacent BH units in the octahedral 
would lead to an opening an edge of this deltahedron. The result 
is a nido pentagonal bipyramid (4) which, from Wade's rules, is 

n-closo 

(21%') 
86b2. 

n-nido n-closo 

(28e') (28e') 
B5Hs4'+BH Ws4'  

n+l-nido 

(28e') 
BGHs4. 

4 
stable for an electron count of 28. Similar results apply to larger 
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Figure 13. Calculated pair potentials of two BH units in (a) trans and 
(b) cis positions of an Oh-B,H6 cluster as a function of electron count. 

deltahedra; in each case, the nido (n + 1)-vertex deltahedron can 
be generated via opening an edge of the closo n-vertex one. 
Alternatively, we could regard either the large repulsive cis or trans 
pair potential at 28 electrons as leading to conversion of B6H6& 
(28 electrons) into B,HSC (24 electrons) + BH. The 24-electron 
B,H$- species would be stable as a nido octahedron. 

One of the features of this plot is the negative pair potential 
at 26 electrons. This turns out to be controlled by the choice of 
coordination geometry for the B2H2 unit in the calculation of the 
energetics of B4H4 + B2H2, which contributes to the pair potential. 
The qualitative features of the variation of the pair potential is 
similar almost irrespective of this choice, but the amplitude at 
26 electrons is largest for the case where B2H2 is modeled by two 
linked BH units as shown in Figure 13 and is less if the BH units 
are separated (this choice preserves the number of close B-B 
contacts in the computation of 4). Importantly, the vital feature 
of the plots, namely the sharp rise in the pair potential past 26 
electrons, is maintained irrespective of this choice. 

Discussion 

We have indicated in this paper some useful aspects of the pair 
potential calculated between atoms in molecules. We reserve for 
Appendix I further discussion of some subtleties in its calculation. 
Fundamentally, knowledge of the sign and magnitude of I$(x) 
determines angular geometries, relative bond lengths, and critical 
electron counts for the electronic stability of molecules with certain 
structures. Our arguments are applicable to both main-group and 
transition-metal complexes. In the interests of generality, we have 
used a single set of orbital parameters to compute I$(x), but the 
use of specific parameters (e+, use of those appropriate for P 
and F in computations on the PFS molecule) does in fact lead to 
a more detailed picture. One of the problems associated with such 
a generic model is that the magnitudes of the pair potentials are 
not very discriminatory. Thus, in our discussions on the AX, and 
ML, molecules it is not clear in numerical terms when an angular 
distortion will appear or a ligand be dissociated as the pair potential 
increases. However, the general trends are clear. For specific 
cases of course, more accurate calculations would be appropriate. 

Our model only allows comment on the "repulsions" between 
"bond pairs" since we have no way to calculate the repulsion 
between lone pairs and between lone pairs and bonding pairs. In 
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Tabk 11. Extended HSlckel Parameters 
valence 
orbital 

€1 €2 CIg cf - H M ~  CV 
Cr 3d -11.22 4.95 1.8 0.506 0.675 

4s -8.66 1.70 
4p -5.24 1.70 

B 29 -15.20 1.30 
2p -8.50 1.30 

H I S  -13.60 1.30 
(2.425)b 

.Coefficients of the double-t function of the d orbitals. bAn expo- 
nent of 2.425 was used in the calculations of all AX, systems in order 
to reduce the ligand-ligand interaction as indicated above. 

spite of this, the pair potential concept has led to the generation 
of the nearest thing so far to the VSEPR concept of repulsion 
between electron pairs located around a central atom. One rather 
interesting result of the approach is the influence of the stability 
of the MLP2 and MLPI or AXP2 and AX,' structures on that 
of ML, and AX,, via the definition of the pair potential. The ML, 
and AX,, molecules appear to have a 'memory" of their genesis 
from smaller fragments that control their stability. 

In more general terms, the form of the pair potential just 
rephrases the well-known rule that controls the structures of 
molecules; namely, species that are stable geometrically usually 
enjoy large HOMO-LUMO gaps. Behind such a statement lies 
the origin' of electron-counting rules (such as the 18-electron rule 
and Wade's rules), rules of the Walsh type, and the predictions 
of both first- and second-order Jahn-Teller effects. In all three 
areas, systems with small gaps will distort (or eject a ligand) to 
produce a molecule with a larger gap. Thus, we find by analysis 
of the computed energy levels as a function of geometry that the 
pair potential (effectively a force between unfavorably located 
ligands) can be tied directly to the opening of a gap and a sta- 
bilization of the HOMO on distortion. It has a maximum along 
a distortion coordinate when the HOMO-LUMO gap is smallest, 
and this is especially pronounced if there is an orbital crossing 
or touching which gives rise to an identity zero gap. Such a 
crossing will lead to either an 'accidental" or symmetry-enforced 
degeneracy and a Jahn-Teller type of instability. 
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Appendix I 

The pair potential is a commonly used concept in surface 
chemistry. On a surface the adsorption of a single species is 
determined exclusively by the local properties of the adsorbate- 
surface interaction. Adsorption of a second atom or molecule 
induces a perturbation of the surface density of states. This 
adsorbate-adsorbate interaction is traditionally defined by a 
relevant set of pair potentials. The interactions can be through- 
space ones of the van der Waals, dipole-dipole or orbital overlap 
or via overlap interactions through the bond or band. These lateral 
interactions, usually in the range of 10-34,5 eV, are much smaller 
of course than typical bond energies and are of the same magnitude 
as surface diffusion barriers. Quantum-mechanical, thermody- 
namic, and statistical methods may be coupled to such a pair 
potential description to study LEED structures, island formation, 
and the mixing/segregation problem in coadsorbed systems. 

Using the same principles for molecules, calculation of the 
binding energy of one ligand or substituent (eq A l )  with respect 
to a second ligand or substituent (eq A2) in a transition-metal 
complex or main-group molecule allows us to determine the 
through-bond interaction, the pair potential, 4, of two ligands or 
substituents in exactly the same way (eq A3). 
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bond energy of X with respect to fragment 

BE0 E(AX) - E(A + X) 
= E(AX) - E(A) - E(X) ( A l l  

bond energy of X with respect to fragment AY 
BE' = E(AYX) - E(AY + X) 

= E(AYX) - E(AY) - E(X) (A21 
interaction energy or pair potential, 4, between X and Y 
4 BE1 - BE0 

= [E(AYX) - E(AY) - E(X)] - [E(AX) - E(A) - E(X)] 
= [E(AYX) + E(A)] -[E(AX) + E(AY)] 

(A31 

(A41 

(AS) 

interaction energy for X = Y 

example for two cis ligands in an octahedral complex ML6 
4 = [E(AXz) + E(A)] - 2E(AX) 

4 = E(Oh-ML6) + E(Ca-ML4) - 2E(Cb-MLS) 
This is shown pictorially in 5 and defines the symbolic repre- 
sentation of these pair potentials used in the figures in the body 

5 
of the paper. We know that 1-electron methods to determine 
absolute bond energies are not very reliable, so the numbers 
calculated with eq A1 or A2 are not very usefl. On the other hand, 
in the calculation of the energy difference 4, where both terms 
in eq A3 or A4 have equal numbers of A-X and A-Y bonds, these 
approaches become much more viable. 

Plotting the energy difference of two isomer structures as a 
function of the fractional orbital filling, x ,  allows a direct con- 
nection between the electronic structure and the topology of 
molecules or solids via the method of moments. The energy 
difference $ ( x )  may be viewed in a similar way, but with the 
difference that here the energies of three structures (A, AX, AX2) 
are involved (four if X # Y: A, AX, AY, AXY). Whereas the 
energetic comparison of two structures as a function of electron 
count provides no ambiguities, there are some questions to be 
answered for the present case of the calculation of 4. 

To compare the energies of three (or more) structures as a 
function of fractional orbital filling, x, the same number of orbitals 
is required for each structure. This is only true in the nonreduced 
form of eq A3, where the systems A + 2X, AX + X, and AX2, 
instead of A, AX, and AXz, are compared. If the orbitals of X 
are energetically separated from the energy levels of the fragment 
A, all three terms of eq A4, involving AX2, A, and AX, have the 
same number of A-X non- and antibonding orbitals (6).  This 

t electron count 

18 _ _ _ _  - 
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is the case in all complexes and molecules where X is a more 
electronegative ligand (substituent) than the central atom of 
fragment A to which the ligands are bound. These are usually 
also the chemically relevant orbitals, and it is often sufficient to 
compare the structures by starting with an electron count where 
all A-X bonding levels are already filled to avoid this problem. 
Even so, with more than two sets of energy levels the question 
does arise as to whether the enerties of the relevant structures 
should be compared a t  constant Fermi level or by ensuring that 
there are the same number of electrons in each structure to be 
compared. For the case of the two cis ligands of the octahedron, 
should then the properties of the merged density of states 
[(4-ML6) + (C,-ML4)] be compared with the merged density 
of states [2E(Ch-MLs)], or should the energies E(Oh-ML6), 
E( C,-MLO), and 2E( Cb-MLS) be separately evaluated at  each 
electron count and then compared? 

If the orbitals of the isolated ligand X lie energetically between 
the chemically important orbitals of the unit A or AX, the energy 
as a function of orbital filling has to be calculated for the case 
where the orbitals of the fragment A or AX are merged with the 
orbitals of the isolated ligand otherwise, the pair potential exhibits 
wildly oscillating (and chemically meaningless) behavior in this 
region. This implies that [E(AX + X)](x) or [E(A + 2X)](x) 
has to be calculated instead of [E(AX)](x) or [E(A)](x). This 
is the case too for the pair potential between two vertices in the 
octahedral cluster BsH6 (here, A = C,-B4H4, X = BH). Here 
we need to calculate the pair potential as 
4(x) 

As discussed in the text, this is a case where the total number of 
close contacts is only maintained if two separated BH units are 
used in the second term. 

[E(B&l(x) + [E(B4H4 + 2BH)l(x) - 
2[E(BSHS + BH)I(x) 

Predictions from the method of moments as to the shapes 
expected for the 4(x) curves may sometimes be made. If two 
atoms first see each other via a self-returning walk of length 4, 
then the pair potential should exhibit four nodes, on the basis of 
the same type of argument employed for the energy difference 
plots themselves. Indeed, this expected correlation between U ( x )  
and +(x) is found in Figure 1. However the sign of 4(x) may 
often not be as easily predicted. For the comparison of two 
densities of states, then the existing arguments show that the 
system with the larger fourth moment will be the more stable one 
for early and late orbital occupancies. But determination of 4(x) 
involves more than two sets of energy levels. If two merged sets 
of energy levels are used, then no ambiguity arises, but if three 
unmerged sets are used in the comparison, as we describe above, 
then the ideas associated with the moments method make no 
predictions as to the resultant sign of $(x). 

Appendix I1 

All calculations were performed by using the extended Hackel 
method. The parameters used are given in Table 11. For the 
calculations of AX,, systems (Figures 4 and 6-10) Cr parameters 
for s/p, d, and s/p/d orbitals were used. To reduce the ligand- 
ligand interaction in these systems, the hydrogen Slater type orbital 
exponent was varied from 1.3 to 2.425 (the value used for fluorine 
2s). Qualitatively similar results were obtained by using the 
standard parameters for H 1s and setting the ligand-ligand overlap 
integrals equal to zero. For the calculation shown in Figures 11-1 3 
the usual Cr, H, and B parameters were used (Table 11). 

All central atom (A or M)-hydrogen distances were kept to 
1.8 A; for calculations involving M-M bonds a M-M distance 
of 2.49 A was used. The B-B and B-H distances were 1.75 and 
1.2 A, respectively. 
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Photoluminescence and Electronic Structure of TI[Au(CN)~]: Evidence for Relativistic 
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Experimental results of a study of the photoluminesccnce of microcrystalline TI[Au(CN),] as a function of temperature (1.7400 
K) and magnetic field (0-6 T) are described. These results, along with relativistically modified extended HIlckel calculations, 
provide evidence that covalent TI-Au interactions alter its spectroscopic properties in comparison with isostructural Cs[Au(CN),]. 
Specifically, the absorption and luminescence of TI[AU(CN)~] appear at lower energies than for CS[AU(CN)~], and a comparison 
of the luminescence spectra and lifetimes for the two compounds reveals evidence for an increased rate of intersystem crossing 
in TI[Au(CN),] relative to Cs[Au(CN),]. Both effects are reflective of covalent TI-Au interactions in TI[Au(CN)J. The electronic 
structure calculations clearly demonstrate the covalency of both the TI-Au and Au-Au interactions in TI[Au(CN),] and reveal 
specific orbital contributions responsible for these interactions. Relativistic effects are shown to play an important role in the TI-Au 
and Au-Au bonding. 

Introduction 
The tendency of certain 5d elements such as Ir, Pt, and Au to 

bond to 6p elements such as TI and Pb in some compounds has 
recently been demonstrated.' It is likely that relativistic effects 
play an important role in this phenomenon by altering the energies 
and sizes of the valence orbitals involved as compared to the 
nonrelativistic situation.lT2 X-ray structural analysis of single 
crystals has been invaluable in establishing the presence of such 
bonding? but little is known about the detailed electronic structures 

'University of Maine. 
*Department of Physics, Bowdoin College. 
(Present address: Physical Sciences, Inc., 603 King St., Alexandria, VA 

22314. 
Department of Chemistry, Bowdoin College. 

of these compounds. Spectroscopic investigations, including both 
electronic absorption and luminescence, and electronic structure 

(1) See for example Ziegler, T.; Nagle. J. K.; Snijders, J. G.; Baerends, E. 
J. J .  Am. Chem. Soc. 1989, 1 1 1 ,  5631-5635 and references therein. 

(2) (a) Pyykk6, P. Chem. Rev. 1988, 88, 563-594. (b) Pyykk6, P. In 
Merhods in Computarional Chemistry; Wilson, S. ,  Ed.; Plenum Press: 
New York, 1988; Vol. 2, pp 137-221. (c) Schwerdtfeger, P.; Dolg, M.; 
Schwarz, G. A.; Bowmaker, W. H. E.; Boyd, P. D. W. J .  Chem. Phys. 
1989, 91, 1762-1774. (d) Ziegler, T.; Snijders, J. G.; Baerends, E. J. 
J.  Chem. Phys. 1981,74,1271-1284. (e)  Balasubramanian, K. J.  Phys. 
Chem. 1989,93,65856596. (f) Pyykk6, P.; Desclaux, J.-P. Acc. Chem. 
Res. 1979.12.276-281. (8) Schwerdtfeger, P.; Boyd, P. D. W.; Bow- 
maker, G. A.; Mack, H. G.; Oberhammer, H. J.  Am. Chem. Soc. 1989, 
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